
Hans-Petter Halvorsen

https://www.halvorsen.blog

Week Assignment
Project Kick-off & Planning

Software Engineering

1. Project Start: Define Teams & Roles
– Select Project
– Make CV (Overview of Skills, Education, Work,

etc.)

2. Team Brainstorming (What/How?)
3. Create a Software Development Plan (SDP)
4. Development Tools
– Install necessary Software
– Get Started with Azure DevOps

Week Assignment

Hans-Petter Halvorsen

https://www.halvorsen.blog

Course Introduction

Table of Contents

“USN Software”
• Dere har herved fått midlertidig ansettelse (5 måneders prøvetid) i firmaet “USN Software”

• Dere er ikke lenger studenter men Systemutviklere

• Dere “må” møte på jobb i arbeidstiden (“kjernetiden”) som er Mandager 12:15-16:00 og
Torsdager 10:15-12:00. Jobbing utover dette må påregnes enten på jobb eller hjemmekontor

• Arbeidsted er C-222 (“kontoret”) - Dvs åpent kontorlandskap som jo blir mer og mer vanlig

• Prøv å endre “mindset” og “uvaner” dere har tilegnet dere som studenter

– Møt forberedt på jobb. Møt i tide.

– Man begynner ikke arbeidsdagen med 4 timers “forelesning” i industrien/næringslivet

– I industrien/næringslivet planlegger man hva man skal gjøre dagen før/uka før, man planlegger møter i
god tid, man stiller forberedt på møter, osv. Man bruker ofte litt av kvelden i forveien til å
planlegge/forberede morgendagen

– Overhold tidsfrister (dere lever av kunden). Det blir stilt krav til dere. Kvalitetssikring av arbeidet.

– Kan man ikke komme på jobb (syk eller liknende), så si/meld fra til teamet/nærmeste leder

– Ta ansvar for prosjektet og egen læring samt dine medarbeidere, dere er ikke bedre enn det “svakeste
ledd”

– Eksempel: Ikke skriv “Vi er 3 studenter på USN som har fått i oppdrag å lage ...”

C-222

Mandager 12:15-16:00
Torsdager: 10:15-12:00“The Office”

Office Hours:

Husk å holde et akseptabelt støynivå!!
Da dere sitter i et åpent kontorlandskap - som forøverig er veldig vanlig for en
Systemutvikler!

Dere er midlertidig ansatt (5 måneders prøvetid)
som systemutviklere i firmaet “USN Software AS”.
“Daglig leder” (CEO): Hans-Petter Halvorsen

Telefoner og utenomsnakk tas på gangen eller på pauserommet (kantina)

Hvert Team sitter sammen for bedre kommunikasjon
og samarbeid (mindre behov for møter, m.m.) ->
Agile/Scrum metodikk

Det er meningen at dere skal være tilstede på kontoret i kontortiden – selv om ikke
“sjefene” (les “lærerne”) er der. Dvs. det er ikke behov for å tilkalle lærerne hvis de ikke
skulle dukke opp hver gang. Når dere ankommer “kontoret” (C-222), begynner dere å
jobbe videre med prosjektet. Dere trenger ikke å sitte å vente på at dere skal få beskjed
om hva dere skal gjøre, da dere er selvstendige Team som har ansvaret for hvert deres
prosjekt og fremdriften av dette. Slik er det i arbeidslivet, og slik er det her.

Team 1

Team 2

Team 3

Team 4

Team 5

Hard Work and doing Practical Work and Exercises are probably better ☺

Ordinary LecturesIn this Course we apply:
• Authentic Teaching and

Learning
• Flipped Classroom
• Project and Problem-based

Learning (PPBL)
• Student-centric Teaching
• Education 3.0
• Programming based learning

Do you learn like this?

Preparations In Class Finishing Work

~
1

3
~
1

3
~
1

3

0% 100%Accumulated Knowledge

Most of the learning takes place outside the classroom: Do not forget the benefits of being well
prepared when you come to the classroom, as well as working with the material afterwards.
Learning takes place during preparations, and when you processes the material. The students
need to work active with the topics and resources.

Watch Videos, read Textbooks, install
Software, etc.
(go through resources on web page for
the week)

Videos, Textboooks, Quizzes, Additional
Resources, Project Work (complete Week
Assignment), etc.

Reviews (Review of previous
Week Assignment), Project
Work (work with Week
Assignment), etc..

Learning Process

Lectures – 5%

Discuss in Groups – 50%

Reading– 10%

Hear and See – 20%

Demonstrations – 30%

Practical Exercises – 75%

Teaching others – 90%

Passive Learning Principles

Active Teaching Principles

“Traditional Lectures are passive teaching methods, where you can keep your attention for
10 minutes” Alf Inge Wang, Professor NTNU (The vendor of Kahoot)

Teaching Outcome

(Just to be clear: This is NOT to be prepared!)

Always be prepared for Class!

Hans-Petter Halvorsen

https://www.halvorsen.blog

Project Kick-off &
Planning

Table of Contents

B. Lund. Lunch. Available: http://www.lunchstriper.no, http://www.dagbladet.no/tegneserie/lunch/

You have chosen Project – Lets get started!

“Closing the Deal” – The Software Project can Start

http://www.lunchstriper.no,
http://www.dagbladet.no/tegneserie/lunch/

Requirements
Analysis

Design

Implementation

Testing

Maintenance

Planning
Deployment

SRS

SDD

STD

Code

Installation
Guides

User Guides

Gantt Chart

with ER Diagram, UML Diagrams, CAD Drawings

Test
Documentation

Software Requirements
Specifications

Software Design Documents

System Documentation

Test Plan

Project Planning

End-User
 Documentation

System
 Documentation

Software Test Documentation

SDP
Software Development

Plan

Gantt Chart

The Software
Development

Lifecycle
(SDLC)

Requirements/Design Alpha

Beta RC
RTM

Furniture, Flowers and
small adjustments missing

Building structure finished,
Inside work on track

Foundation finished, building structure started
Plans made ​and approved

Ready for Sale or Move in

A “proof” that you can do it, PoC (Proof of Concept)

The 80 – 20 Rule:
• It takes 20% of the time to finish 80% of your application ->

Prototype (80% finished)
• 80% of the users only use 20% of the features
Conclusion:
• Someone always tends to make things more complicated than

necessary!
• The main goal in this Project and Course is to make a

functional Prototype! – Not a fully working professional
Product ready for sale

• Estimated Hours: 270+ hours/student

Level of complexity in your solution?

• Visual Studio/C#
• Systemet skal være Modulbasert

– Vær så snill ikke lag et kjempestort/avansert program som gjør
alt mulig rart – Del opp i Moduler! Det blir så mye enklere å lage,
vedlikeholde og bruke! Typisk er det også forskjellig type brukere
som vil bruke de forskjellige modulene.

– Hvert team-medlem bør fortrinnsvis ha ansvaret for hver sin
Modul/Applikasjon!

• SQL Server Database (installeres lokalt på hver enkelt PC)
• Minst en modul må være laget vha ASP.NET Core
• Dere må selv lage Kravspesifikasjonen til systemet, både HVA som

skal lages og HVORDAN (Design) det skal lages

Grunnleggende Prosjektkrav
Warning! Helt grunnleggende for å få en god karakter!

How to Work
Workload (hours)

Workload (hours)

Timew1 w2 w3 …

Timew1 w2 w3 …

…

Ferdigstill forrige ukes planer og
oppgaver slik at dere ikke får etterslep
og må gjøre forrige ukes arbeid i tillegg
til denne ukas arbeid. Da blir det mer og
mer å gjøre for hver uke.

https://allthingsagile.co/post/agile-principle-7/

Would you rather eat layers (left image) or slices (right image) of a burger?

Important Agile principle: Working software, documents and
product at all times, which is illustrated with the hamburger
to the right

(Agile)

Plan-driven vs. Agile

(Plan-driven/Waterfall)

https://allthingsagile.co/post/agile-principle-7/

Hans-Petter Halvorsen

https://www.halvorsen.blog

Project Start: Define
Roles and Teams

Table of Contents

• Project Start: Organize yourself into Teams
in the classroom

• Max 5 Teams

• 3-4 students in each Team (3 is optimal!!)

• Select a Project from the Project List

See Next Slides for more details...

Define Teams and Roles

• Customer/Stakeholders
• Project Manager
• Software Architect
• UX Designer
• Developer
• Tester
• etc.

UX Designer Programmer

Software Tester

Project Manager

Software Architect

Collaboration!

Customer/Stakeholders

Each of you should be and practice
these different roles in this project

Teams and Roles

Software Tester

System Engineer

Project Manager

Programmer/Developer

Software Architect

UX Designer

Stakeholders

A System Engineer is a general person that could be a Programmer, Architect, Designer, Tester in different phases in the project, or he
could be a tester in one project and a programmer in another project – all in one person. That is usually the case in small companies,
while in larger companies these roles (designer, tester, programmer) could be a full-time job.

Each of you should
be and practice
these different roles
in this project

Software Teams

Team 1 Team 2

Team 4

Team 3

Team 5

Partial Delivery 1

Partial
D

elivery 2Partial Delivery 3

Partial Delivery 4
Partial Delivery 5

Independent
Sofware
Development Team

Company
Management

Customer Total Delivery

CEO, CTO, Project Leader(s)

Report Status and Progress
to Management

Report Status and
Progress to Customer

Software + Documentation

Software + Documentation

Total Delivery

Project Organization

Stakeholders

Product Owner

Scrum Master

Product Backlog

Development Team
3-9 persons

Sprint Backlog

Sprint

Daily Scrum Meetings

Sprint
Review

You will learn more about Agile Software Development (and Scrum) later

Developers

Scrum Team

Requirements
All in the Team should be Scrum
Master during the Semester

Scrum Teams and Roles

• In order to get to know each other, each member
should write a CV. Upload the document to Teams.
– Background (former education, work experience, etc.)?,

skills within Programming and Software Engineering?
Project Work, etc.?

• Get an overview of the skills inside the team
• Use the CV just created as a foundation
• Who is best suited for the different parts that shall be

solved in the project?
• The CVs may also be included as an appendix in the SDP.

Team Skills/CV

Hans-Petter Halvorsen

https://www.halvorsen.blog

Brainstorming

Table of Contents

• Perform a Brainstorming session inside your Team,

• i.e., find out what you shall do and how to do it

• The “big picture” – not (unnecessary) details yet. Make a basic System Sketch
– What shall the System do?

– Which Modules does the system consists of?

– Main Functionality?

– Hardware?

– Language?

• In general, Don’t think to complicated

– Someone always tends to make things more complicated than necessary!

– The main goal in this Project and Course is to make a functional Prototype! – Not
a fully working professional Product ready for sale (Time Frame 270h/student)

– 80% of the users only use 20% of the features
See Next Slides for more details...

Make sure to include results from the
Brainstorming into the SDP document

Brainstorming

The Brainstorming should include:
• High-level Software Requirements

– What your system/applications should do

• High-level Software Design
– How your application shall work and operate
– What is the purpose with the application
– Simple user interface design sketches, flow charts, etc.

Note! This will be a first draft, more details will be/should be added
later.

Brainstorming

High-Level Requirements

vs. Detailed Requirements

• WHAT should the system do?

• Who should use the system

• What is the purpose with the system?

• Performance

• What parts should the system consists of

• What Platforms should be used (PC, Tablet, Web?, ...)

• etc.

- Use Words and Figures in order to describe these Requirements

High-Level Requirements

• What Platforms should be used (Windows, iOS, ...) in more detail

• Tools and Languages

• Software Architecture ()

• Frameworks (.NET, ASP.NET, ...)

• Detailed GUI design sketches

• UML Diagrams

• ER (Database) Diagrams

• CAD Drawings

• etc.

Detailed Requirements

High-Level
Requirements and
Design Documents

User Manuals

System
Documentation

Installation Guides

Test Plans

Test Documentation

Detailed
Requirements and
Design Documents

ER Diagram (Database)
UML Diagrams (Code)

Ti
m

e

Start

Finish

How to Test/
What to Test

CAD Drawings, etc.

1. Planning

2. Testing

3. End-user
Documentation
(The people that
shall actually use
the software)

Technical Stuff

How to use it

How to install it

Proof that you have tested and that the
software works as expected

(The stakeholders, the
software team; architects,
UX designers, developers)

(QA people)

(Super User/ IT dep.)

WHAT
HOW

(End User)P
ro

je
ct

 M
an

ag
e

m
e

n
t

(G
an

tt
 C

h
ar

t,
 e

tc
.)

(SRS)
(SDD)

(STP)
(STD)

Software
Development Plan (SDP)

2.Requierements
/Design

Software Documentation

One Report with “everything” Software Development Plan

Requirements and Design Documents

System Documentation

Test Documents

Installation Guides

User Guides

One document written
by 3-6 students together

Many documents written by
different people and intended
for different people

Software installed at
Customer or Setup
available for download

Does the system works?
Hopefully – but never used
or tested by the reader,
Customer (or the students?)

The software is the heart
and needs to work properly
– otherwise the customer
cannot use it and will not
pay for it!

We shall do
it like this in
this course!

“Traditional School Project” vs. “Real Life
Software Development Project”

Hans-Petter Halvorsen

https://www.halvorsen.blog

Software
Development Plan

Table of Contents

• Create a Software Development Plan (e.g., 8-10
pages)

• By spending time on the SDP now, you will save lots
of time later!

• Also referred to as the “Communication Plan” or just
“Project Plan”

• The SDP is a document that describes the Project,
Resources, Communication, Schedule (e.g., Gantt
chart), Tools, etc. See Next Slides for more details...

The SDP should be
places in Teams

Software Development Plan (SDP)

Systemutvikling = Fotball
Systemutvikling er Teamarbeid hvor man gjør hverandre gode

Laget består av individer som må samarbeide for å lykkes

Det hjelper ikke å ha Ronaldo på
laget hvis ikke spillerne klarer å
samarbeide og gjøre hverandre
gode. De må kommunisere godt
og fordele arbeidsoppgaver, vite
hvordan de skal spille, osv.

Fotballspillerne har forskjellige roller (spiss, forsvar, kaptein, ..), i Software Engineering
har vi Programmerer, Tester, Arkitekt, Scrum Master, Prosjektleder, ..

Laget på lage en god plan for å vinne kampen
(Softwareutvikling: Software Development Plan, SDP og
Software Requirements and Design dokument, SRD)

Sentre ballen til medspillere

Kompetansedeling!

• A Software Development Plan (SDP) is all about the Internal
Communication within the Development Team and how it
Communicates with rest of the Organization, the
Customers, etc.

• The purpose of the SDP is to communicate to team
members and stakeholders how the software/project shall
be caried out

• Examples of contents: Project Plan, Project Organization,
Software and Tools that shall be used in the project
management and development, etc.

Software Development Plan (SDP)

• We will use Microsoft Teams for sharing and
collaboration on Documents under construction

– Here you can easily collaborate on writing documents in
real-time

• We will use Azure DevOps to store and share Project
Planning and Source Code

– We should also share Release/Final Documents (Word
files, Excel files, Visio files, etc.) in Azure DevOps

Document Location?

An SDP normally include the following sections:

1. Introduction: This briefly describes the objectives of the project and set out the constraints (e.g., budget,
time, etc.) that affects the management of the project. Simple System Sketch

2. Project Organization (Team Description) This section describes how the development team is organized,
the people involved and their roles in the team. Software Process Model Description (Scrum, XP, Waterfall,
...), etc.

3. Risk Analysis (Hva kan gå galt? Og hvordan kan vi unngå det? Evt en en “bredskapsplan” hvis det skulle
skje)

4. Hardware and Software Resource Requirements

5. Work Breakdown (WBS, Work Breakdown Structure): Break down the project in into activities and
identifies milestones

6. Project Schedule: Shows dependencies between activities, the estimated time required to reach each
milestone, allocation of people to activities. (5) and (6) is typically done in a Gantt Chart (created in e.g.,
Microsoft Project)

7. Monitoring and Reporting Mechanisms: Definition of the Management Report that should be produced,
when they should be produced, etc.

8. Tools that you are using

Example 1

I. Sommerville, Software Engineering: Pearson, 2015

Note! Sommerville use the name “Project Plan” instead of SDP

Ch. 23 Project Planning

Software Development Plan (SDP)

A. Product Description
B. Team Description
C. Software Process Model Description
D. Project Definition
E. Project Organization
F. Validation Plan => Basic Test Plan
G. Configuration/Version Control
H. Tools

Example 2

For more details, see “Essentials of Software Engineering”, Frank Tsui; Orlando Karam;
Barbara Bernal, 3 or 4 ed., Jones & Bartlett Learning

Depending on the size
and complexity of the
project, the plan itself

may take several hours
to several days or
weeks to develop

Appendix A

Software Development Plan (SDP)

A. Product Description: Describe the product and the client in general

B. Team Description: Describe the strengths/skills needed for the team members of this product. Give overview of
Team members and their skills and roles.

C. Software Process Model Description: Describe the model (e.g., iterative Scrum, XP, or modified water- fall) to be
used for this project. Include justifications for the process model choice.

D. Project Definition: Describe the users and the user environment. Include novice/expert descriptions. Consider
creating different personas with different needs and motivations. For the user environment include the software
used previously, other software used in conjunction, and the look and feel of the contemporary software genre.
Can include use cases of the product, workflow diagrams, and/or business flow.

E. Project Organization: Include work breakdown structure (WBS) of the project: the schedule of the team's tasks;
dependencies of the tasks; estimated time for each task; and PERT and Gantt charts with critical time, budget,
and BID to the client with signature required.

F. Validation Plan: Create some draft input and output screens as low-level prototype to validate the initial
understanding of the product. => Basic Test Plan (but with few details)

G. Configuration/Version Control: Specify the process and attributes for version control of all project and product
artifacts.

H. Tools: Provide a list of major system, subsystem, and tools required for development.

Example 2 with Details

Software Development Plan (SDP)

• Coding Styles and Guidelines
• Pascal, Camel-case, lower-case or upper-case?
• How to define Variables, GUI components, etc.
• C#, SQL syntax, Table format, etc.
• It is important that all developer follow the same

conventions
• Etc.

Note! All this information should be part of SDP

Coding Conventions

• You may create a simple draft of the Gantt Chart using
MS Project this week.

• Important milestones, deadlines and available human
resources should be part of the Project Plan (see the
course schedule)

• It should be included in the Software Development
Plan (SDP).

• More details will/should be added in the Next Week
Assignment after the Requirements Analysis

Gantt Chart

Identify and get an overview of the Risks in this Project. Risk Analysis and
Management is the identification, evaluation, and prioritization of risks.
3 Steps:
• Step 1: Identify potential Risks

– The purpose is to create a comprehensive list of potential events that can trigger
consequences that do not match our goals or wishes.

• Step 2: Risk Analysis
– The Risk Analysis includes an assessment of both the causes and sources of the

potential risks, the consequences they may have, as well as the likelihood that
these consequences will occur.

– Place your Risks in a Risk Matrix where you have Severity vs Probability.

• Step 3: Risk Evaluation
– What shall you do if they occur or how can you avoid them? Make a list of

Treatments for the most critical Risks that you have identified and analyzed.

Risk Analysis

Risk Analysis Example

What shall you do if they occur or
how can you avoid or minimize it?

A Risk Analysis Item should typically
contain the following:
• Risk Name
• Risk Description
• Severity (e.g., High, Medium, Low)
• Probability (e.g., Very Likely, Likely, Not

Likely)
• Description of Treatment, i.e., how to

avoid (or minimize it) or/and what to
do if it occurs

Risk Analysis Example

• Use what you have learned in previous projects when it comes to writing
documents and reports

• Typically, you have a Title Page, Table of Contents, Introduction Chapter, etc.
• Each Chapter should typically start on a New Page
• Use proper Referencing
• Use proper Figure-labeling and Figure-numbering. Make sure to refer to and

explain the Figure in the text (the same goes for Tables and Equations)
• Make sure to include Page Numbering (e.g., in the Footer). The Chapter

Name could, e.g., be in the Header
• Use same Layout, Fonts, Colors for all Documents
• All Documents should have a good structure and a “professional look and

feeling”
• Etc. (All this should be available in SDP, either directly or link to a template,

etc.)

Document Structure/Layout/Formatting

Project
Management

Documentation

Development

Project Work consists of working
with Project Management,
Development and Documentation
in parallel.
If you remove one of these, the
project will fail

If you remove one of the legs, the table will fall apart

Table with 3 legs

Project Work

https://allthingsagile.co/post/agile-principle-7/

Would you rather eat layers (left image) or slices (right image) of a burger?

Important Agile principle: Working software, documents and
product at all times, which is illustrated with the hamburger
to the right

(Agile)

Plan-driven vs. Agile

(Plan-driven/Waterfall)

https://allthingsagile.co/post/agile-principle-7/

Hans-Petter Halvorsen

https://www.halvorsen.blog

Development Tools

Table of Contents

1. Microsoft Teams

2. Install necessary Software:

1. Microsoft Visual Studio

2. SQL Server (“SQL Server Express is recommended)

3. Microsoft Visio Professional

4. Microsoft Project Professional

5. erwin Data Modeler Academic Edition

6. Microsoft Teams (Part of Office 365)

7. ++ (Need more Software/Tools/Programming Languages later)

3. Get Started with Azure DevOps

1. Create an Account and a New Team Project

2. Add Team members, give Access to the Supervisors (Stakeholders)

3. Create a good Folder Structure for your Documents and Code

4. Create Iterations & Areas

Development Tools

• We will use Azure DevOps as our software
collaboration platform for our software lifecycle
management (SDLC).

• Azure DevOps will be our main tool in addition to
Microsoft Teams and Visual Studio

• Azure DevOps is located here:
https://dev.azure.com

Azure DevOps

https://dev.azure.com/

• Azure DevOps is an Application Lifecycle Management (ALM)
system,
– i.e., the system takes care of all aspects in software

development
– from planning, requirements, coding, testing, deployment and

maintenance.
– Agile and Scrum workflow are included

• Azure DevOps is a Source Code Control (SCC), Bug Tracking,
Project Management, and Team Collaboration platform

• Tightly integrated with Visual Studio as Microsoft is the vendor
of both Visual Studio and Azure DevOps

What is Azure DevOps?

Requirements
Analysis

Design

Implementation

Testing

Maintenance

PlanningThe Software
Development

Lifecycle (SDLC)

Deployment

Azure
DevOps

Azure DevOps is an Application Lifecycle Management (ALM) System

Source Code Control
(SCC)

Bug Tracking

Project
Management

Collaboration Platform
Scrum

Agile

Visual Studio

SDLC Management

MS Excel

MS Project

Azure DevOps

Developer #1 Developer #2

Developer #3

Visual Studio Visual Studio

Visual Studio

SQL Server

SQL Server

SQL Server

Create Documents, Code, Database Scripts Create Documents, Code, Database Scripts

Create
Documents,
Code, Database
Scripts

Get Latest VersionGet Latest version: Somebody else
may have made some changes in
the code, documents, etc. Make
sure you always get the latest
version before start working.

Check In: When Creating New
Code/Documents or have made Changes
to Existing. Make sure to Check In often!

Check Out: Want to make changes? You
need to Check Out first!

Latest version of Code/Documents
is always on the Server. You will
also find previous versions, history
of who/when Check In and Out, etc.

Cloud/Internet

Copy of Code,
Database &
Documents

Copy of Code,
Database &
Documents

Copy of Code,
Database &
Documents

It is recommended that you in general
work with different parts of the code to
avoid problems (-> Module-based)

Use Azure DevOps in Visual Studio

Make sure to select these settings!!!

Here you enter the name of
the project you have chosen

New Project

Folders and Files

Configure Iterations/Sprints

Product Backlog Items and Tasks

59

Create a good Folder structure
for your Documents and the

Source Code

Open the Source Control Explorer

Azure DevOps in Visual Studio

Hans-Petter Halvorsen

University of South-Eastern Norway

www.usn.no

E-mail: hans.p.halvorsen@usn.no

Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

	Introduction
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

	Background
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

	Team
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

	Brainstorming
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

	Development Plan
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

	Development Tools
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

	Finished
	Slide 60

